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Spiral Waves in Nonlocal Equations∗

Carlo R. Laing†

Abstract. We present a numerical study of rotating spiral waves in a partial integro-differential equation defined
on a circular domain. This type of equation has been previously studied as a model for large scale
pattern formation in the cortex and involves spatially nonlocal interactions through a convolution.
The main results involve numerical continuation of spiral waves that are stationary in a rotating
reference frame as various parameters are varied. We find that parameters controlling the strength
of the nonlinear drive, the strength of local inhibitory feedback, and the steepness and threshold
of the nonlinearity must all lie within particular intervals for stable spiral waves to exist. Beyond
the ends of these intervals, either the whole domain becomes active or the whole domain becomes
quiescent. An unexpected result is that the boundaries seem to play a much more significant role
in determining stability and rotation speed of spirals, as compared with reaction-diffusion systems
having only local interactions.

Key words. spiral wave, nonlocal, PDE, bifurcation

AMS subject classifications. 37M20, 45K05, 92C20

DOI. 10.1137/040612890

1. Introduction. Rotating spiral waves are ubiquitous spatiotemporal patterns that ap-
pear in two-dimensional active media [2, 3, 4, 23]. They have been observed in a variety
of experimental chemical and biological systems and in mathematical models of reaction-
diffusion type [12, 16, 18, 30]. In cardiac systems, spiral waves are thought to be associated
with pathological conditions such as fibrillation [5, 12], and there has been much interest in
observing spiral waves on intact hearts and in simulating such waves with a view to perturbing
the system so that the spiral waves are destroyed [18
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Also, in two dimensions, discretizing differential operators results in sparse matrices, as op-
posed to the full matrices that result from discretizing an integral operator. Techniques for
solving sparse matrix equations can then be used to study finely discretized systems on a
workstation. See [20, 21] for more details on this approach.

2.1. Specific model. The specific equations we study are

[
∇4 − ∇2 + 1

] (∂u(x, t)

∂t
+ u(x, t) + a(x, t)

)
= Bf [u(x, t), θ, ρ],(4)

τ
∂a(x, t)

∂t
= Au(x, t) − a(x, t),(5)

where x ∈ R
2. Equation (4) is formally equivalent to the integral equation

∂u(x, t)

∂t
= −u(x, t) + B

∫ ∫
Ω

w(|x − y|)f [u(y, t), θ, ρ] dy − a(x, t),(6)

where Ω ⊆ R
2 is the domain of interest, and

w(r) =

∫ ∞

0

sJ0(rs)

s4 + s2 + 1
ds,(7)

where J0 is the Bessel function of the first kind of order zero. This equivalence is easily seen
by taking the two-dimensional Fourier transform in space of (6), resulting in

F [ut + u + a] = F [w]F [Bf [u, θ, ρ]],(8)

where F [·] is the Fourier transform. If

F [w] =
1

s4 + s2 + 1
,(9)

where s is Euclidian distance in Fourier space, then multiplying both sides of (8) by the
denominator of F [w] and taking the inverse two-dimensional Fourier transform result in (4).
The coupling function w is given by the inverse Fourier transform of (9), which is (7), and is
plotted in Figure 1. See [20, 21] for more details.

The pair of equations (5)–(6) is of the same form as those studied in [11, 32], but the
domain is now assumed to be two-dimensional. The function f we use is

f [u, θ, ρ] = H(u − θ)e−ρ/(u−θ)2 ,

where H is the Heaviside step function. In the limit as ρ → 0, f(u, θ, ρ) → H(u − θ). We
consider the domain Ω to be a circular disk of radius R and take boundary conditions

∂u

∂r

∣∣∣∣
r=R

=
∂3u

∂r3

∣∣∣∣∣
r=R

= 0.
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Figure 1. The coupling function w(r), given by (7).

We look for spiral waves that undergo rigid rotation about the center of the disk. For these
solutions, we can replace ∂/∂t in (4)–(5) with −ω × ∂/∂θ, where ω is the angular velocity of
the spiral [2, 3]. This results in the equations

[
∇4 − ∇2 + 1

] (
−ω

∂u

∂θ
+ u + a

)
= Bf [u, θ, ρ],(10)

−ωτ
∂a

∂θ
= Au − a.(11)

We can rearrange (11) to

a = A

(
I − ωτ

∂

∂θ

)−1

u,(12)

where I is the identity, which gives a in terms of u. We can substitute this into (10), obtaining
one equation for u that must be solved:

[
∇4 − ∇2 + 1

] [
I − ω

∂

∂θ
+ A

(
I − ωτ

∂

∂θ

)−1
]

u = Bf [u, θ, ρ].(13)

Because of the rotational symmetry of the problem, there is a continuous family of solutions
of (13), each member of which is obtained from another in the family by an angular rotation.
This degeneracy can be eliminated by augmenting (13) by another equation which pins the
phase of the spiral [2, 3]. The inclusion of this extra equation allows us to treat ω as an
unknown in (13) and to find the pair (u, ω) together.

In section 3 we will find one solution of (13) by direct numerical integration of (4)–(5) and
then numerically continue this solution as a parameter is varied, generating a parametrized
family of solutions.

Note that for the default parameters used (A = 2, B = 3.5, ρ = 0.1, θ = 0.2), the sys-
tem (4)–(5) has three fixed points in the absence of spatial coupling (these are roots of
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(A + 1)u = Bf(u, θ, ρ)) at u ≈ 0, 0.58 and 1. The first and third of these fixed points
are stable foci, whereas the second one is a saddle.

One point we do not address here is the mathematical proof of the existence of spiral
wave solutions of (4)–(5). Scheel [37] has recently proven the existence of spiral waves in
reaction-diffusion systems on an infinite plane, while Paullet, Ermentrout, and Troy [31] prove
their existence in an oscillatory reaction-diffusion system on a disk with Neuman boundary
conditions. The obvious difficulty with trying to use results of these authors is the nonlocal
nature of (4)–(5).

2.2. Stability. To find the stability of a spiral wave, we write the evolution equations (4)–
(5) as

∂u

∂t
= −u + B[∇4
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Figure 2. Rotational speed ω as a function of adaptation strength A. Solid lines indicate stable solutions,
while dashed indicate unstable. See text for other parameters. Clicking on the above image displays the associated
movie showing spirals at different points on the curve (61289 01.mpg).

Figure 3.

http://epubs.siam.org/sam-bin/getfile/SIADS/articles/61289_01.mpg
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Figure 6. Rotational speed ω as a function of B, the strength of the nonlinear term. Solid lines indicate
stable solutions, while dashed indicate unstable. See text for other parameters. Clicking on the above image
displays the associated movie showing spirals at different points on the curve (61289 04.mpg).
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Figure 10. Rotational speed ω as a function of τ . See text for other parameters. Clicking on the above
image displays the associated movie showing spirals at different points on the curve (61289 07.mpg).
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of the others at particular default values. By varying any of these default values, different
diagrams—perhaps qualitatively different ones—may be found, so we have by no means com-
pletely understood the system under study. Another possible step in the study of this model
would be to follow the codimension-one saddle-node or Hopf bifurcations in two parameters.
This would help in determining regions of parameter space in which the system was bistable,
for example, and might reveal higher-codimension bifurcations which could have interesting
behavior associated with them.

Although we have considered only spiral waves that rotate about the origin of the domain,
which we can analyze, the system (4)–(5) is also capable of supporting spiral waves that do
not rotate about the origin and the simultaneous existence of more than one of these waves,
phenomena that have been observed previously [28, 30]. Spiral waves are generic phenomena,
and the system studied is quite robust. We have successfully simulated spiral waves in domains
with inhomogeneities, e.g., domains for which the value of θ at each grid point is chosen from
a normal distribution (not shown).

We have also observed target patterns, formed by outwardly moving concentric rings of
active neurons. These are commonly observed in systems which also support spiral waves [16]
and have been seen in simulations of large networks of spiking neurons [19]. In order for these
waves to continue to be emitted from the center of the domain, some inhomogeneity must
be present there. We created this inhomogeneity by decreasing the threshold, θ, in a small
circular neighborhood of the origin. We have also observed plane waves in the absence of
inhomogeneities in the domain.

4. Conclusion. In this paper we have numerically demonstrated the existence of spiral
waves in a spatially nonlocal integro-differential equation of the form commonly used to model
two-dimensional neural fields. For this model, we investigated the dependence of spiral waves
on the parameters of that system. We have determined the ranges of those parameters over
which stable spirals exist. This information could be used in two different ways. If spiral
waves are viewed as undesirable (in the same way as in cardiac systems [5, 12]), we can
use this information to determine how sensitive the system is to a change in a particular
parameter, by knowing how wide the parameter range is in which stable spirals exist. We
can also determine the necessary change in a particular parameter to make the system no
longer capable of supporting a stable spiral
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periodic patterns created in these bifurcations as parameters are changed. We also observed
multiarmed spirals which are unstable for moderate domain sizes, in agreement with results
observed in reaction-diffusion systems.

Most of the results we have seen are not dissimilar to those observed in reaction-diffusion
systems with local interactions. However, the issue of the influence of domain size seems to
be unresolved. In section
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