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Spiral waves are a basic feature of excitable systems. Although such waves have been observed in a variety of biological systems, they have
not been observed in the mammalian cortex during neuronal activity. Here, we report stable rotating spiral waves in rat neocortical slices
visualized by voltage-sensitive dye imaging. Tissue from the occipital cortex (visual) was sectioned parallel to cortical lamina to preserve
horizontal connections in layers III–V (500-�m-thick, �4 � 6 mm2). In such tangential slices, excitation waves propagated in two
dimensions during cholinergic oscillations. Spiral waves occurred spontaneously and alternated with plane, ring, and irregular waves.
The rotation rate of the spirals was �10 turns per second, and the rotation was linked to the oscillations in a one-cycle–one-rotation
manner. A small (�128 �m) phase singularity occurred at the center of the spirals, about which were observed oscillations of widely
distributed phases. The phase singularity drifted slowly across the tissue (�1 mm/10 turns). We introduced a computational model of a
cortical layer that predicted and replicatedmanyof the features of our experimental findings.We speculate that rotating spiralwavesmay
provide a spatial framework to organize cortical oscillations.
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Introduction
A spiral wave in the broadest sense is a rotating wave traveling
outward from a center. Such spiral waves have been observed in
many systems (Winfree, 2001; Murray, 2003), including biolog-
ical systems, such as heart ventricular fibrillation (Davidenko et
al., 1992), retinal spreading depression (Gorelova and Bures,
1983), fertilizing Xenopusone labels the phases of oscillation at each point in the medium, a“phase singularity” should be observed at the center that distin-guishes spiral waves from other kinds of rotating waves (Winfree,2001). The most rigorous demonstration of spiral wave forma-

tion in cortex that we are aware of is the finding of phase singu-
larities in optical imaging of turtle visual cortex, which demon-
strated circular waves persisting for up to four rotations (Prechtl
et al., 1997).

Although circular waves were predicted from early models of
cortical activity (Beurle, 1956), true spiral wave formation was
not observed until the more sophisticated Wilson–Cowan for-
mulation (Wilson and Cowan, 1972, 1973) and modern comput-
ing simulation strategies (Milton et al., 1993). Our experimental
work was inspired by such theoretical considerations. Neverthe-
less, a close link between computational models of spiral wave
formation in cortex and experiment has not been attempted
previously.

In this report, we present evidence for stable spiral waves (up
to 30 cycles) in rat neocortical slices with robust phase singulari-
ties. We also introduce a computational model of a cortical layer
that predicts and replicates many of the features of our experi-
mental findings. Our results suggest the possibility that spiral
dynamics participate in the spatial organization of prolonged and
periodical activities such as seizures and oscillations in neocortex
related to sensory and motor events.

Materials and Methods
Tangential slice. Neocortical slices were obtained from Sprague Dawley
rats (postnatal days 21–35). Tangential slices were cut with a vibratome
on the rostrocaudal and mediolateral coordinates of bregma �2 to �8
mm and lateral 1–6 mm, respectively (see Fig. 1, left). The first cut was
made 300 �m deep from the pial surface, and the tissue was discarded.
The second cut was made 500 �m deeper to obtain a 500-�m-thick slice
of middle cortical layers. The slice was perfused with artificial CSF
(ACSF) containing the following (in mM): 132 NaCl, 3 KCl, 2 CaCl2, 2
MgSO4, 1.25 NaH2PO4, 26 NaHCO3, and 10 dextrose (saturated with
95% O2 and 5% CO2 at 28°C for 1 hr before experiments). When the
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slices were perfused with 100 �M carbachol and 10 �M bicuculline, oscil-
lations (4–15 Hz) occurred spontaneously, and the activity appeared as
spiral and other waves in the voltage-sensitive dye imaging. These activ-
ities lasted as long as the preparation was perfused with carbachol and
bicuculline, similar to coronal slices (Lukatch and MacIver, 1997; Bao
and Wu, 2003).

Voltage-sensitive dye imaging. An oxonol dye, NK3630 (Nippon
Kankoh-Shikiso Kenkyusho, Okayama, Japan) was used as an indicator
of transmembrane potential. Slices were stained with 5–10 �g/ml of dye
dissolved in ACSF for 60–120 min (26°C) and perfused in a submersion
chamber during the experiment (28°C). Imaging was performed with a
photodiode array on an upright microscope with transillumination (ab-
sorption) arrangement (Wu et al., 1999; Jin et al., 2002). Data were



Phase singularity
To distinguish the spirals from other types of rotating waves, we
analyzed the spatial phase distribution of the spirals (Fig. 2C).
During the entire period of the spiral, the phase distribution
within the field of view was mapped between �
 and 
 (Fig. 2C).
The highest spatial phase gradient was observed at the pivot of the
spiral (Fig. 2C, white dots). The presence within such a phase
gradient of a phase singularity would be the hallmark of a true
spiral wave (Ermentrout and Kleinfeld, 2001; Winfree, 2001;
Jalife, 2003).

We hypothesized that a phase singularity in the slice would be
observed as a small region containing oscillating neurons with
nearly all phases represented between �
 and 
. Such phase
mixing would result in amplitude reduction in the optical signal.

In the experiment in Figure 3, we used
higher spatial resolution to search for the
singularity. Using a 25 � 25 hexagonal ar-
ray with 464 elements, each detector cov-
ered a circular area 128 �m in diameter
(total field of view, 3.2 mm in diameter).
All of the detectors showed high-
amplitude oscillations before the forma-
tion of spirals (Fig. 3A, traces a–e, before
the first broken vertical line). During spi-
ral waves, the phase singularity drifted
slowly across the tissue (�1 mm/10 turns).



mostwidelyusedmodels for suchmediumarebasedon theWilson–
Cowan equations (Wilson and Cowan, 1972, 1973). Later, modifi-
cations by Pinto and Ermentrout (2001) described one-dimensional
wave propagation in excitatory disinhibited neural networks. We
extended this approach into two dimensions.

We seek the simplest model possible, reducing the neurons to
points in a continuum that has excitation and recovery but, as in
our experiments, no inhibition. Such a model represents the
qualities of a disinhibited network dominated by fast excitation
(perfused by carbachol and bicuculline) and with an intact recov-



ture of the wave front, because, within a given set of anatomical
connections, different wave patterns occur (Fig. 2) (movies 1–4,
available at www.jneurosci.org as supplemental material). Inter-
estingly, all of the patterns were associated with the oscillation in
the same manner: one-cycle–one-wave for nonrotating waves
and one-cycle–one-rotation for spirals. This is consistent with
previous characterizations of one-dimensional waves in coronal
slices (Wu et al., 1999; Bao and Wu, 2003).

Although oscillations are commonly observed in sensory
(Gray and Singer, 1989; Franowicz and Barth, 1995) and associa-
tional (Pesaran et al., 2002) cortices, little is known about the
spatial organization that accompanies such oscillatory activity. It
has been shown in visual cortex that sensory-evoked oscillations
can demonstrate intercolumnar coherency (Eckhorn et al., 1988;
Gray et al., 1989). We speculate that rotation waves of spirals may
provide a spatial framework to organize cortical oscillations. Dy-
namic stability of spirals might extend the duration of evoked
activity and interact with incoming input streams, and, in patho-
logical conditions, might contribute to seizure generation. Spiral
waves might serve as emergent population pacemakers to gener-
ate periodic activity in a nonoscillatory network without individ-
ual cellular pacemakers. Spirals might be used for coordinating
oscillation phases over a population of neurons, serving func-
tions such as binding sensory information or dynamical temporal
storage in working memory.
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