
The importance of different timings of excitatory and
inhibitory pathways in neural �eld models

Carlo R. Laing
�

Institute of Information and Mathematical Sciences, Massey University,
Private Bag 102-904 North Shore Mail Centre, Auckland, New Zealand

and
S. Coombes

�

Department of Mathematical Sciences,
University of Nottingham, Nottingham, NG7 2RD, UK.

December 15, 2005

Running title: �Different timings in neural �eld models�

Corresponding author:
Carlo R. Laing,
Institute of Information and Mathematical Sciences,
Massey University, Private Bag 102-904 North Shore Mail Centre,
Auckland, New Zealand
ph: +64-9-4140800 extn 41038
fax: +64-9-441-8136
email: c.r.laing@massey.ac.nz

�
email: �������
	���
�������������������������� ����
email: �! ���"�#����$�%��&�&���'���������&� � �
�����#����(�
����� )�*

1





solutions in Sec. 4. In both cases we use an Evans function approach [7] to determine the stability of
solutions and the conditions necessary for both drift and breathing bifurcations. In Sec. 5 we examine
the collision of two fronts, which leads us to study anti-pulses. We also brie�y consider networks
in which excitatory connections have longer spatial range than inhibitory ones. We �nish with a
discussion in Sec. 6.

2 The model

We analyze a neural �eld model with synaptic activity u � ue(x � t) � ui(x �



2.1 A PDE description

For the particular choice of synaptic footprint (4) it is possible to obtain an equivalent PDE descrip-
tion of the integral equation (2), using ideas developed by Jirsa and Haken [23]. To see this we write

� a(x � t) � � �� �
� �� � Ga(x � y � t � s) � (y � s) ds dy � (5)

where
Ga(x � t) ��� (t � � x � � va)wa(x) (6)

and we use the notation � (x � t) � f � u(x � t). Introducing Fourier transforms of the following form

� a(x � t) � 1
(2 � )2

� �� �
� �� � e

� i(kx ��� t) � a(k ��� )dkd � � (7)

allows us to write � a(k ��� ) � Ga(k ��� ) � (k ��� ) � (8)

It is straightforward to show that the Fourier transform of (6) is

Ga(k ��� ) �	�
a( � � va 
 k) 
 � a( � � va � k) � (9)

where �
a(E) � ���

0
wa(x)e

� iExdx � �
Γa

2 � a � 1
� � 1

a 
 iE
� (10)

We have using (9) and (10) that

Ga(k ��� ) � Γa(1 
 i � �
� a)�
1 
 i � �
� a � 2 
 � 2

a k2
� (11)

where � a
� va � � a. We may now write (8) as� �

1 
 i � �
� a � 2 
 � 2
a k2 � � a(k ��� ) � Γa

�
1 
 i � �
� a � � (k ��� ) � (12)

which upon inverse Fourier transforming gives the PDE:�
tt � a 
 � � 2

a � v2
a
�

xx � � a 
 2 � a
�

t � a
� Γa

� � 2
a 
 � a

�
t � � � (13)

If we choose the synaptic response �
a(t) to be the exponential: �

a(t) ���
aΘ(t) exp( � � at), where Θ(t)

is the Heaviside function, de�ned by Θ(t) � 1 for t � 0 and zero otherwise, we can also write the
integral equation (1) as the differential equation

1�
a

�
ua�
t

� � ua(x � t) 
 � a(x � t) (14)

In numerical simulations of the model we integrate (13) and (14) using �nite difference approxima-
tions to the spatial derivatives and work with the choice

f (u) � 1
1 
 e ��� (u � h) � (15)

where h can be thought of as a threshold and � as a gain parameter.
Note that if we set ve

� vi
� v and �

e
� �

i
� � , i.e. we remove the differences in timings for the

two neural populations, our system reduces to

u ��� 
�� � (16)

� (x � t) ��� �� � dyw(y) f � u(x � y � t ��� y � � v) (17)

where w(y) � )
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Figure 7: Supercritical Hopf bifurcation of a stationary bump. At t � 100 we switched ve from 0.8
to 0.5 (and a small perturbation was added). 200 spatial points were used. Other parameters are� e

� 1 � � i
� 2 � � i

� 1 � 8 � � e
� 3 � vi

� 1 � h � 0 � 1 � Γ � 1 � ue is plotted; red high, blue low.

obtain
[w(∆)]2

�
1 � cos 	 � (1 � 4) sin2 	 � � 0 (28)

which is only true if 	 � 0 � 2 � � 4 � � � � Substituting these values of 	 back into (27) we see that it cannot
simultaneously be satis�ed, i.e. E(

�
) has no purely imaginary roots. If w(∆) � 0 the only root of E(

�
)

is
� � 0, which corresponds to the saddle-node bifurcation in Fig. 1. Thus both types of instabilities

are a result of the differences in timings for the two populations.
Bifurcations of the types discussed in this section have recently been observed in a system with

one neural population but in which the threshold is a dynamic variable [8]. There, the authors also
saw a stationary bump start to move as an eigenvalue moved through zero, and stationary breathers
caused by a supercritical Hopf bifurcation. Breathers have also been observed in neural �eld equa-
tions by Bressloff et al. [4, 13], but in those papers the authors made the domain inhomogeneous,
inducing a bump to occur over a spatially-localised input. During normal awake operation the cor-
tex continuously receives inhomogeneous inputs, so the response of a neural model with such inputs



introduce the coordinate � � x � ct and seek functions U( � � t) � u(x � ct � t) that satisfy the full integral
model equations. In the ( � � t) coordinates, these integral equations can be expressed as U( � � t) �
UeB 1 Tf
0.12 0 0 -0.12 531 0 Td
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Figure 9: Front speed as a function of h. Stable fronts are represented by solid lines, unstable by
dashed. Parameters are Γ � 0 � 85 � � e

� 1, � i
� 0 � 1, ve

� vi
� 1, � i

� 2 and � e
� 1.
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Figure 10: Front speed as a function of h. Parameters are � i
���

e
� 1 � ve

� vi
� 1 � � e

� 1 � � i
� 2 � Γ �

0 � 8. The solid branch is stable, while the dashed ones are unstable.
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2h � 2(1 � Γ) 
 2
�
Γ exp( � � i∆ � c) � exp ( � � e∆ � c) �


 �
exp ( � � e∆ � c) � 1

1 � cm �
e � � e � 
 �

exp ( � � e∆ � c) � exp ( � m �
e ∆)

1 � cm �
e � � e �

� Γ
�
exp ( � � i∆ � c) � 1

1 � cm �
i � � i � � Γ

�
exp ( � � i∆ � c) � exp ( � m �

i ∆)
1 � cm �

i � � i � (41)

2h � �
1 � exp (m �

e ∆)
1 � cm �

e � � e � � Γ
�
1 � exp (m �

i ∆)
1 � cm �

i � � i � (42)

Note that as c � 0, both (41) and (42) reduce to the equation governing the width of a stationary
bump, (20), as expected.

The Evans function takes the same form as in Sec. 3.2, with (21) replaced by

A (
�

) � �
A(0 � � ) B(0 � � )
A(∆ � � ) B(∆ � � )� � (43)

where A( � � � ) � Ae( � � � ) � Ai( � � � ), B( � � � ) � Be( � � � ) � Bi( � � � ), and

Aa( � � � ) � 1
c � q � (0) � � �	 � (1 � c � va)

dywa(y) � a( � � � c 
 y � c � y � va)e
��� (y � 	 ) � c (44)

Ba( � � � ) � 1
c � q � (∆) � ���

( 	 � ∆) � (1 � c � va)
dywa(y) � a((∆ � �
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Figure 13: A subcritical Hopf bifurcation of a moving pulse. At t � 100, h is switched from 0.05 to
0.07. ue is plotted, red high and blue low. Periodic boundary conditions are used. Other parameters
are as in Fig. 12.
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Figure 15: A wide moving pulse for which the back travels slower than the front, leading to the
formation of an �anti-pulse�. Top: ue is plotted, with black being high and white low. Bottom: u �
ue � ui once the anti-pulse has formed. h � 0 � 05, so most of the domain is active. Other parameters
are as in Fig. 9.
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5.1 Anti-pulses

For anti-pulses, q( � ) � h for 0 � � � ∆ and q( � ) � h otherwise. Using
� �� � wa(x)dx � Γa, we have

� a( � ) �
����� ����

Γa � Fa

� � 	
1 � c � va

� ∆ � 	
1 � c � va � � � 0

Γa � Fa

�
0 � 	

1 � c � va � � Fa

�
0 � ∆ � 	

1 � c � va � 0 � � � ∆

Γa � Fa

� 	 � ∆
1 � c � va

� 	
1 � c � va � � � ∆

� (53)

where Fa is given by (40). The conditions q(0) � h � q(∆) are then easily determined using q( � ) �
qe( � ) � qi( � ) and

qa( � ) � ���
0

�
a(s) � a( � 
 cs)ds (54)

and the fact that these integrals have essentially been done in the determination of (41)-(42). They
are

2h � � 2
�
Γ exp( � � i∆ � c) � exp ( � � e∆ � c) �

�
�
exp ( � � e∆ � c) � 1

1 � cm �
e � � e � �

�
exp ( � � e∆ � c) � exp ( � m �

e ∆)
1 � cm �

e � � e �

 Γ

�
exp ( � � i∆ � c) � 1

1 � cm �
i � � i � 
 Γ

�
exp ( � � i∆ � c) � exp ( � m �

i ∆)
1 � cm �

i � � i � (55)

and

2h � 2(1 � Γ) �
�
1 � exp (m �

e ∆)
1 � cm �

e � � e � 
 Γ
�
1 � exp (m �

i ∆)
1 � cm �

i � � i � (56)

The width and speed of anti-pulses is determined by the simultaneous solution of (55)-(56). The
Evans function for antipulses has the same form as that for pulses, sinceforSn �
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Figure 16: Width (left panel) and speed (right panel) of a travelling pulse as a function of h, with
inverted Mexican hat connectivity. Solid lines represent stable one-bump solutions and dashed un-
stable, while the dotted lines indicate a solution of (41)-(42) which is not a one-bump solution. Pa-
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Figure 17: Top: a stable travelling pulse for inverted Mexican hat connectivity. Bottom: the interac-
tion of two such travelling pulses leads to



breathing bumps. These bifurcations can be found by explicitly constructing an Evans function for
these solutions and, as shown in Sec. 3.4, they cannot occur if the synaptic time-constants and con-
duction velocities are the same for both layers.

Our work has produced results similar to those of several other groups. For example, Curtu
and Ermentrout [9] recently studied an extension of the system �rst discussed by Hansel and Som-
polinsky [19]. This model had one neural population, Mexican-hat type connectivity, an adaptation
variable and no delays. The authors found travelling and standing waves, and stationary, spatially-
periodic patterns. However, their results were derived by linearising about the spatially-uniform
state, and are thus unable to say anything regarding spatially-localised patterns of the type studied
here.

Golomb and Ermentrout [15] studied the effects of delays on propagating activity. They included
a �xed delay and found that increasing this led to lurching waves. (We did not include a �xed delay,
but see below.) However, they used a spiking neural network in which each neuron could only
�re once, and only excitatory coupling. Because of this, they could not �nd stationary or arbitrarily
slowly moving patterns, as we have. In later work [16, 17] these authors studied a network with
both excitatory and inhibitory populations but did not include conduction delays for most of their
analysis, and still allowed neurons to �re at most once, thus precluding the existence of stationary
patterns. One interesting result that they found was the coexistence of both fast and slow propagating
pulses, which we have not found. However, these authors found that once neurons were allowed to
�re multiple times this bistability disappeared, with only the slow pulses persisting.

Blomquist et al. [1] studied a two-layer neuronal network without delays (an extension of that
studied by Pinto and Ermentrout [33]), and found both subcritical and supercritical Hopf bifurca-
tions of stationary bumps. Coombes and Owen [8] studied a single neural layer with Mexican-hat
connectivity and a variable representing spike frequency adaptation. They found both drifting and
breathing bifurcations of stationary bumps, as we have, and also supercritical Hopf bifurcations of
travelling bumps, which we have not found. We now discuss possible extensions of the work pre-
sented here.

One extension would be to break the homogeneity of the domain (re�ected by the appearance of
x and y in (2) in (both)(connectivitsaps.)T9Tj
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�nite conduction velocity does not destabilise travelling bumps or fronts in one spatial dimension [5,
15], it is not clear whether the same holds in two dimensions.

A more general model, more clearly differentiating the two neural populations, would be

ua
���

a 
 � a � a �	� e � i 
 (59)

� e(x � t) � � �� � dywee(y) fe � ue(x � y � t � � y � � ve)

� � �� � dywie(y) fi � ui(x � y � t ��� y � � vi) (60)

� i(x � t) � � �� � dywei(y) fe � ue(x � y � t ��� y � � ve)

� � �� � dywii(y) fi � ui(x � y � t � � y � � vi) (61)

Here we not only have different conduction velocities ve and vi and different synaptic �lters �
e and�

i, but different �ring rate functions fe and fi and four coupling functions, wee � wei � wie and wii instead
of the two in (1)-(2). Choosing fa(u) � Θ(u � ha), i.e. using the Heaviside function as the �ring rate
function, with two different thresholds, we should be able to analyse (59)-(61) in much the same way
as we have analysed (1)-(2) in this paper. Some of the analysis in [8], in which the threshold is a
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