

C. Laing, P. Glendinning / Physica D 102 (1997) 1-14

problem of finding solutions of the equation

$$z - \mu \approx \beta z^{\delta} \cos \left[\frac{\omega_1}{\nu} (\log h - \log z) + \phi_2 \right],$$

where β (> 0), *h* and ϕ_2 are constants relating to the exact geometry of the flow and $\delta = |\lambda/\nu|$ (see for example [13] for a derivation of this result).

(2)

Each root of this equation approximately corresponds to a periodic orbit in the flow, the approximation getting better as the homoclinic orbit is approached.

In the following one common that S and ware find impage the condition that there is a condition production

10	C. Laing, P. Glendinning/	Physica D 102 (1997) 1–14	
		n	
,	\$. Ta		
	# ·		
			4
— ,			
			1
\	<i>r</i>	L	
			1
			1
			Ĩ
			6
· · · · · · · · · · · · · · · · ·			(;
	A1/		
	A/1		

10

Eles Q A mine of les in the second state in the second state of the second state is a second state of the second state of the

Fig. 9. A plot of period T (of the basic orbit) and half-period $\frac{1}{2}T$ (of the period-doubled orbit) versus α for Eq. (16), showing the bifurcation sequence "period-doubling, saddle-node, reverse period-doubling". The value of ϵ is 0.22346, and γ is 0.5.

5. Conclusion and comments

We did not dicuss path 1 of Fig. 2 in this paper. The bifurcations that occur along here are expected to be of interest because when $\delta = 1$, the sum of the eigenvalues of the Jacobian is zero and the flow is then locally "conservative" in some sense. There are expected to be some similarities with the $|\lambda/\nu| = 0.5$ case for the saddle-focus, as the flow in this case is also "divergence-free" at the stationary point. This last case is mentioned in [6], but does not seem to

-	
	One other guanue open for investigation is the application of the technique discussed in Section 2 to sustame

13