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Bifocal homoclinic bifurcations 
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Abstract 

Homoclinic orbits to bifocus-type stationary points have been studied theoretically by a number of authors, but up until 
now, only one analytic example has been found. In this paper we summarise and extend the known theory regarding bifocal 
homoclinic bifurcations and present numerical verification of some of the more interesting theoretical predictions that have 
been made. 
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1. Introduction 

Homoclinic bifurcations have been studied by many authors h
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bifurcations. Section 3 is a short description of the technique used to construct a vector field that undergoes a bifocal 

homoclinic bifurcation. This has been presented elsewhere [ 11,12] and is thus brief. Section 4 presents numerical 

verification of some of the theoretically derived results presented in Section 2, while Section 5 is a summary that 

also gives some conjectures and ideas for further work. 
A homoclinic orbit for an autonomous ordinary differential equation 

Jc = f ( x , /Z ) ,  f : ~n  X ~ ~ ~n  (1) 

is a non-trivial solution Xh (t) of (1) that tends to a stationary point, ~, in both forwards and backwards time, i.e. 

lim Xh( t )  ----- fi,, xh(O)  5~ x .  
t --~ ± oo 

For typical vector fields the existence of a homoclinic orbit is non-generic and we expect there to be an isolated 
value of/z,  which from now on we assume to be 0, at which the homoclinic orbit exists. We are normally interested 

in the possible dynamics of  the vector field for small values of  I/zl. 
Assuming that the homoclinic orbit does not pass too close to other stationary points in the flow, the local dynamics 

can be determined solely from the eigenvalues of  the Jacobian of the vector field evaluated at the stationary point, 
Df(£c, 0) (henceforth called A). Typically, trajectories which 
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Fig. 1. Top: a schematic sketch of period versus # for the saddle-focus case showing some of the infinite number of saddle-node 
and period-doubling bifurcations that accumulate on # = 0. Bottom: A schematic sketch of a "double-pulse" homoclinic orbit to a 
saddle-focus. 

approaching it. These last two concepts are illustrated schematically in Fig. 1. (Note the stabilty of  the periodic 

orbit in the top sketch - there are period-doubling bifurcations on every second "wiggle".)  

It can be shown that the asymptotic (as period ~ ~ )  difference in period between successive crossings of  the 

/z = 0 line in Fig. 1 (top) is zr/wl,  while the ratio of  successive values of  # at which saddle-node bifurcations of  

periodic orbits occur is - e x p  ( - r rV /Wl ) ,  where the initial minus sign is due to the oscillation of  the curve about 

/ z = 0 .  
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2.1. Codimension one phenomena 

As mentioned above, it was shown by Shil 'nikov [15] that if # ---- 0, there is chaotic behaviour in an arbitrarily 

small 
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Fig. 2. Four possible paths in (E, 8) space along which codimension two bifurcations occur. 

a bifocus at any point along this path, we will not mention it further. Paths 2 and 3 are discussed below, while path 

1 is mentioned in the conclusion. 

2.2.1. Path  2 

Along fn6o6 Tc
0 Tw
(Path ) Tj
20.64 c0 Tc
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 0  T 9 . 2 8 a t h  2 t h e r

2.2.2. Path 3 

Along path 3 we expect a significant change as we move through the codimension two point, since if E < 0 

there are no saddle-node bifurcations of  periodic orbits, whereas if e > 0 there is an infinite number accumulating 

on # = 0. 
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in both phase and parameter space, we can approximate the problem of finding periodic orbits in the flow by the 

problem of finding solutions of the equation 

z - tz ~ flz~ cos [ ~ - ( l o g h  - logz)  + dp2] , (2) 

where/3 (> 0), h and 4~2 are constants relating to 
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2.4. The saddle- focus to bifocus transition 

In a similar way to the above, assume that the linearisation of the flow about the stationary point is 

rl = )~rl, 
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(where X e ~ 3 , f  : ~3 x R ~-~ ~3 contains only nonlinear terms, # is a scalar bifurcation parameter and A is a 

3 x 3 matrix with eigenvalues ~. -4- iwl, v, where ~. < 0 < v) which has a homoclinic orbit to the origin at # = 0. 

Then the augmented system 

= A X  + f ( X ,  Ix) - we3, fv = E(e~. X ) / D 3  -t- v w  (14) 
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Fig. 3. The relative positions of two curves of double-pulse homoclinic bifurcations and the curve of primary homoclinic bifurcations 
for Eq. (16). The horizontal axis is E and the vertical one is the difference between the a-values for the two curves (0tdp) and Uh. Two 
crossings are clearly seen as E increases. Note that in this case the two curves of double pulse homoclinics join together as ¢ increases. 
(The curves of "homoclinic bifurcations" are actually the locus of orbits with very high period, as explained in the text.) 
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Fig. 4. The relative position of one curve of double-pulse homoclinic bifurcations and the curve of primary homoclinic bifurcations for 
Eq. (16). The horizontal axis is ~ and the vertical is the difference between the a-value for the curve and a h. 

We cou ld  have  per formed  numer ica l  exper iments  as in [12]  to provide  more  c o n v i n c i n g  p r o o f  o f  the e x i s t e n c e  o f  
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4.2. Path 3 

In this sec t ion  w e  w i s h  to ver i fy  the theoret ical  results  f rom S e c t i o n  2.2.2. To do this  w e  require all the parameters  

o f  the u n a u g m e n t e d  s y s t e m  to be  constant ,  so that w e  can vary e and/z and verify Eq. (12). 
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Fig. 5. The positions of three successive curves of saddle-node bifurcations of periodic orbits relative to the curve of primary homoclinic 
bifurcations for Eq. (17). The horizontal axis is E and the vertical is the difference in/z-values between the saddle-node curves and the 
homoclinic curve. 

If y = 0.5 in (15), there is a principle homoclinic bifurcation to the origin when ot ,~ 0.9641494, and in this case, 

the eigenvalues of  the Jacobian evaluated at the origin are approximately -0 .815373 4-0.929383 i and 0.630745854, 

and the eigenvector and adjoint eigenvector corresponding to the real eigenvalue are approximately 

0 .801639004)  

0.505630478 

0.318924328 

and 

0.624255617 ) 

0.6659763565 , 

0.40838758217 

respectively. Using these vectors to augment (15) when (c~, y)  ---- (0.9641494, 0.5) and introducing a bifurcation 

parameter/z results in the system: 

.~ = y - 0.801639004w, 

.)) = z - / z x  2 - 0.505630478w, 

= 0.9641494x - x 2 - 0.5y - z - 0.318924328w, 

[0.624255617x + O.6659763565y + O.40838758217z ] 
tb = ~ 0.9674103297 + 0.630745854w. 

(17) 

Note that while these coefficients have been calculated only approximately, it was exactly Eq. (17) that was numer- 
ically studied. 
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Fig. 6. The data points shows log [/Zsn - / Z h l  versus ~:-1/2 for the data in Fig. 5. 

4.3. Belyakov's scaling 

This section is a numerical verification of the result derived by Belyakov [3] and described in Section 2.2 for 

the shape of the curves of saddle-node bifurcations of  periodic orbits in the transition from a homoclinic orbit to a 
saddle-focus to a homoclinic orbit to a saddle. The system we study is the following 

k = y - z ,  

.9 = 2.657466x + 2.328733y + x 2 + xy + #x 2 + 0.83893461Z, (18) 

[ 2.657466x - -  0.83893461 y ] 
~. = E L 3.361277 J - 0.83893461z. 

This system was derived by augmenting a truncated unfolding of the normal form of the Takens-Bogdanov bifur- 

cation 

Jr=y,  } , = 2 c x + ( l + c ) y + x 2 + x y ,  (19) 

which is numerically observed to have a homoclinic connection to the origin at c ~ 1.328733, in a way similar to that 

explained in Section 3. When c = 1.328733, the Jacobian of (19) has eigenvalues of approximately 3.1676676 and 

-0 .83893461,  and the eigenvector and adjoint eigenvector associated with the negative eigenvalue are approximately 

( , ( 2.657466 
- 0 . 8 3 8 9 3 4 6 1 )  and \ -0 .83893461 ) ' 

respectively. Hence the augmented system (18). When e = z = 0, the system (18) restricted to the (x, y)-plane 
has a homoclinic connection to the origin at # = 0. The eigenvalues of  the Jacobian of the full three-dimensional 
system evaluated at the origin are 3.1676676, -0 .83893461 4- ix/g, when e > 0; i.e. the o91 of Eq. (9) is x/~. 

Four curves of  saddle-node bifurcations of  periodic orbits relative to the curve of homoclinic bifurcations for this 
augmented system are shown in Fig. 7. A plot of log [/Zsn - / z h [  as a function of 1/,,/~ for these curves is shown 
in Fig. 8. The average of the difference in slopes of  successive curves is 2.67, in good agreement with the expected 

value (from Section 2) of[  - 0.83893461rr [ ~ 2.64. 
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Fig. 7. A plot of the difference in/.t-values for four curves of saddle-node bifurcations of periodic orbits and the curve of homoclinic 
bifurcation as a function of E for system (18). 
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Fig. 8. A plot of log I/Zsn - #hi v e r s u s  E - 1 / 2  for the data shown in Fig. 7. 

4.4. Codimension one phenonema 

The possibil i ty of  a periodic orbit involved in a bifocal homoclinic orbit undergoing period-doubling and then 

a number of  saddle-node bifurcations before reverse period-doubling was conjectured in [8] and mentioned in 

Section 2.1. This behaviour has been observed in (16) for y = 0.5 and is illustrated in Fig. 9 - a plot of  period and 

half-period (for the doubled orbit) versus ot when ¢ = 0.22346. 
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Fig. 9. A plot of period T (of the basic orbit) and half-period ½ T (of the period-doubled orbit) versus et for Eq. (l 6), showing the 
bifurcation sequence "period-doubling, saddle-node, reverse period-doubling". The value of ~ is 0.22346, and F is 0.5. 

5. Conclusion and comments  

We did not dicuss path 1 
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