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system, in the limit of an infinite number of oscillators, could be described by three ordinary differential
equations. However, Pikovsky and Rosenblum [20] showed, using the ansatz of Watanabe and Strogatz
[21], that the Ott/Antonsen (OA) ansatz did not completely d
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A, B, C and D), but where each member of the ensemble has a randomly chosen set of frequencies {ω1

j} and

{ω2

j} (these both come from the same distribution g, and g is the same for each member of the ensemble).
Letting the number of members of the ensemble go to infinity we describe the state of population 1 by the
probability density function

f1(θ1
1
, θ1

2
, . . . , θ1N ; ω1

1
, ω1

2
, . . . ω1

N ; t)

and population 2 by the function

f2(θ2
1
, θ2

2
, . . . , θ2N ; ω2

1
, ω2

2
, . . . ω2

N ; t)

which, by conservation of oscillators [4, 18], satisfy

∂fσ

∂t
+

N∑

j=1

∂

∂θσ
j

[
fσ

(
dθσ

j

dt

)]
= 0 (7)

for σ
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and

Âj =
1

N

N∑

k=1

Ajkak B̂j =
1

N

N∑

k=1

Bjkbk (27)

Ĉj =
1

N

N∑

k=1

Cjkbk D̂j =
1

N

N∑

k=1

Djkak (28)

The interpretation of the ak is that the magnitude of ak gives the “peaked-ness” of the angular distribution
over the ensemble of the θ1k — the closer |ak| is to 1 the more peaked the distribution, while |ak| = 0 corre-
sponds to a uniform angular distribution. The argument of ak gives the phase about which the distribution
of the θ1k are peaked. Similarly for the bk and population 2.

Note that when A, B, C and D are full, there exists a solution of (23)-(28) for which ak = a and bk = b ∀k,
where a and b are governed by the two complex equations studied by Laing [3]:

da

dt
= −∆a + (eiα/2)(µa + νb) − (e−iα/2)(µa + νb)a2 (29)

db

dt
= −∆b + (eiα/2)(µb + νa) − (e−iα/2)(µb + νa)b2 (30)

If ∆ = 0, (29)-(30) are the same equations as studied by Abrams et al. [7]. As Barlev et al. [8] noted, this
type of sychronised solution, for which ak = a and bk = b ∀k, also exists when the coupling matrices all
have the same row sum, i.e. all of the oscillators have the same in–degree. Note that (29)-(30) were derived
by Abrams et al. [7] not by averaging over an infinite ensemble of finite networks as done by Barlev et al.
[8], but by considering the limit N → ∞ for a single network with full connectivity.

III. RESULTS

We now consider the solutions of (23)-(28). For concreteness we set
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FIG. 7: The values of βsn for which there is a saddle-node bifurcation of fixed points of (25)-(28) and (31)-(32) for
Erdös-Rényi-type random matrices A, B, C and D, as a function of p. At each value of p, 10 realisations of the random
matrices were used, and the mean and standard deviation of the 10 βsn are shown. Other parameters: N = 300, E =
0.2, ∆ = 0.001.
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FIG. 8: Values of E at which a Hopf bifurcation of a stable stationary chimera state occurs for an Erdös-Rényi-type
network, for different values of p. At each value of p, 10 realisations of the random matrices were used, and the mean
and standard deviation of the 10 values of E are shown. Other parameters: N = 300, β = 0.05, ∆ = 0.001.

2. Chung-Lu-type networks

We now consider a second type of perturbation from the fully-connected case in which edges are removed
preferentially so as to create a specific skewed degree distribution. The algorithm we use to create these
networks is motivated by the Chung-Lu algorithm [26]. We begin by assigning to each oscillator in a
subnetwork a weight wi = N(i/N)r, where i = 1, 2, . . . N is the oscillator number within the network.
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