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perturbation was added at ¢ = 10 and we see that the solution quickly settled to being
even about an x value of approximately 0.87 x 2x. Note that during the transients the
first modes of the real and imaginary parts of A are even about different points, but on
the attractor they are even about the same point, as they must be for an even solution.
See [19] for more details on orbital stability.

Despite searching, we could not find any evidence of a “blowout” bifurcation [4] in
which the even solution remains chaotic while the dominant Lyapunov exponent in the
normal direction changes from zero to positive as a parameter is varied. The reason for
this i1s that, as shown in Figure 7, the solution in the even subspace becomes periodic or

quasiperiodic before the normal Lyapunov exponent becomes positive.

7 Conclusions

Our numerical results show that for much of the parameter space for the CGL equation,
chaotic solutions which have some sort of reflectional symmetry are unstable to perturba-
tions which break that symmetry, while there are also small regions of parameter space
in which there are chaotic even solutions that are asymptotically stable with respect
to odd perturbations. Of course we have not investigated all of the three-dimensional
parameter space and there may be more interesting behaviour waiting to be found. Pe-
riodic solutions with symmetry are sometimes stable with respect to symmetry-breaking
perturbations but it would appear that for most parameter values for the CGL equation
that for arbitrary initial conditions, if the final solution is chaotic then it will have the
minimum possible amount of symmetry. Clearly these ideas apply to any PDEs with
symmetry and are not restricted to the CGL equation. Different results may be obtained

for different equations.
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which are, for Matlab, typically smaller than the quantity being transformed by a factor
of 10'6. Thus, for example, the discrete Fourier transform of a real, even function will
not be purely real, but will have a small imaginary component, and when the inverse
transform is taken the result will have a small odd component. If this even solution is
stable with respect to odd perturbations this will not matter, but for solutions such as
those shown in Figures 1-2 where we have instability to odd perturbations these errors
will grow exponentially in time and ultimately overwhelm the even solution.

If we want the solution to remain within an invariant subspace we must modify the
numerical scheme. For the above example, this is simply done by setting the imaginary
component of the transformed variable to zero immediately after it is calculated, or
better still, only working with the real part of the transformed variable. This is the
technique used for Lyapunov exponent calculations. This method cannot, however, be
used in, for example, the calculations for Figure 1. Here, although we added a small
odd perturbation after 2 seconds to demonstrate instability in this isotypic component,
strictly speaking this was not necessary as, given sufficient time, the numerical errors
introduced by the Fourier transform would have grown large enough to destroy the

appearance of evenness — all we did was hasten the onset of this phenomenon.

6.1 Stable even chaos

Although for the vast majority of parameter values we examined, solutions that were
chaotic when restricted to lie in a fixed point subspace were unstable with respect to
perturbations normal to that space, we did find a region in parameter space in which
there exist chaotic solutions in the subspace of even solutions that are stable with respect
to perturbations in the odd subspace. We plot the Lyapunov exponents in part of this
region in Figure 7 and show a typical example, at parameter values R = 1.05, v = 4,
p = —4, in Figure 8, where this particular solution is even about the origin. We might
describe this as “weak” chaos arising from the bifurcation of a periodic or quasiperiodic
orbit for which the dominant Lyapunov exponent in the normal direction remains zero
as a parameter is varied.

The chaotic even solution at these parameter values is orbitally stable, meaning that
there is a continuous family of such solutions related to one another by the spatial shift,
re, and (assuming there are no coexisting attractors) an arbitrary initial condition will
be attracted to one member of this family i.e. a solution that is even about some point.
We demonstrate this in Figure 9 where we plot a solution started at a randomly chosen
initial condition together with one of the two points in [0, 27) about which the first mode

of the solution (i.e. that described by a linear combination of yp8 haotb eao ey weak






(This is just the inverse discrete Fourier transform of { Xy (¢)}.) The spectral coefficients,

Xk(t), are obtained from {A,(z,,t)} via the discrete Fourier transform

Xe(t) =Y Ar(wn,t)exp (—ikz,), 0<k<N-1. (5.2)

n=1

Since A,(z,,1t) is real,
Xe(t) = Xn-i(t), k=1,...,N/2—1,

and both Xy(2) and Xy/,(t) are real. Furthermore, if A,(z,,1) is even then { X (%)} is
real, and if A(z,,1) is odd then {Xy(¢)} is purely imaginary.

We use {Xj(t)} as our dependent variables, i.e. given {X(¢)} we want to know
{Xk(t)} Using the spectral representation of our solution, (5.2), evaluation of the linear
terms RA 4 (1 + iv)V*A in (1.1) is simple, and unlike a finite-difference scheme, the
spatial differentiation is exact. To calculate the nonlinear term (1+:u)A|A|? the inverse
transform (5.1) is used to form {A(x,,?)} from its real and imaginary parts. The cubic
term {A(z,,1)|A(z,,t)]*} is then calculated, and a Fourier transform of the form (5.2)
is used to evaluate the contribution of this nonlinear term to {X(¢)}. Anti-aliasing
is performed in the calculation of the nonlinear term using padding and truncation as
described in [10] and N is chosen to be a power of 2 so that the fast Fourier transform

and its inverse can be used.

6 Numerical Results

In Figure 1 we show an example of a periodic orbit that is stable within X, but which is
unstable to odd perturbations. We start from a randomly chosen even initial condition
which evolves rapidly to a periodic state. A small odd perturbation is introduced at

t = 2 and this grows exponentially in time so that for ¢ >



dominant Lyapunov exponent associated with the attractor in X. and in X but did not

look at the effect of symmetry-breaking perturbations.

The group X3 has four one-dimensional irreducible representations and so there are

four corresponding isotypic components. These can be specified as

Wi
W,
W
W,

{Ae X
{AeX:
{AeX:
{Ae X:

A0,1) =0, Ay(n/2,t) =0} = Fix(S)
A,(0,1) =0, A(r/2,t) = 0}

A(0,1) =0, A(x/2,1) = 0}

A,(0,1) =0, Ay(r/2,1) =0},






orbit at the origin, we have that

d(0A(z, 1 d(e? Az,
LoA(z,t) = dA(z,)) | _ d(e"Al, 1) _ iA(z,1).
db 4—0
Similarly,

LoA(z,t) = Ag(z,t), LgA(x,t) = Ay(z,1).

Thus, any chaotic attractor which is not spatially uniform has three zero Lyapunov
exponents associated with it. If the attractor lies in Fix(X) for some subgroup ¥ of
I', then the zero Lyapunov exponents may occur in different Y-isotypic components.
These can be determined by finding which isotypic components contain the trajectories
LA(z,t) for each L € L. However, for any symmetry, LgA(z,t) and LzA(z,t) will
always have the same symmetry as the solution trajectory and so occur in Wy = Fix(¥)
whereas in some cases, L, A(x,t) may occur in a different isotypic component.

As a simple example, consider the CGL equation with homogeneous Neumann bound-
ary conditions which is equivalent to considering solutions which are invariant un-
der the reflectional symmetry s;. Thus, the symmetries of the solution are given by
Y = {I,s} ~ Z,;. The ¥-isotypic components are W; = Fix(X) which consists of all
even periodic functions and W, which consists of all odd periodic functions. When only
a reflectional symmetry is involved, the isotypic components W; and W, are often re-
ferred to as the symmetric and antisymmetric spaces respectively. In this case we see
that LgA(x,t) and LgA(x,t) are symmetric functions while L, A(



exponent associated with the isotypic component Wy can then be found using the vector

form of the variational equation restricted to Wy given by

Se = Dipf(x(t))de,  ¢(0) = wi € Wy, (3.4)

and is given by

o1
Mg = t{%lo ;log Wk(t)



3.1 Classification of Lyapunov exponents

For a general n—dimensional ODE
&= f(z), x(0)= g, (3.1)
we find the Lyapunov exponents by integrating the variational equation
C=Df(z(t)E, %(0) =1, (3.2)
where D f(z(t)) is the Jacobian of f evaluated at x(), the solution of (3.1). We define

A = Tlim [ ()T (1)), (3.3)

t—o00

provided this limit exists, where the superscript “T"” denotes the matrix transpose. The
Multiplicative Ergodic Theorem of Oseledec [18, 27] states that this limit exists for u-
almost all g, where p is the invariant measure associated with the attractor of (3.1). If
the eigenvalues of A are m;, 2 = 1,2,... ,n, then the Lyapunov exponents of the solution
z(t) are

Ai =log|m;|, +=1,2,... n.

If (3.1) is equivariant with respect to some compact Lie group I', then we have the

following result [6].

Lemma 3.1 Let S be an invariant set contained in Fix(X) for some subgroup ¥ of T.
For zo € S, let x(t) be the solution of (3.1) with x(0) = xg. Then the solution ¥(t) of

the variational equation (3.2) commutes with the action of ¥, i.e.

forallo e ¥ andt > 0.

A corollary of this is that the matrix A defined by (3.3) also commutes with the
action of ¥. Thus, A can be put into block diagonal form and so its eigenvalues, and
thus the Lyapunov exponents, can be associated with particular isotypic components.

The dominant (most positive) Lyapunov exponent associated with each isotypic com-
ponent is the most important one for our purposes since it indicates whether the invari-
ant set S is stable with respect to perturbations associated with the particular isotypic
component (a positive dominant Lyapunov exponent implies that S is unstable to such
perturbations). Using the block diagonal form of A these are easily computed.

For a particular X-isotypic component Wy we know that D f(x(1)) leaves Wy, invariant

and so we denote its restriction to Wy, by Dy, f(x(t)): Wy, — Wj. The dominant Lyapunov



The significance of this isotypic decomposition is that for a linear operator L satis-

fying (2.3), all the isotypic components are invariant under L, that is
L:W, — W,

This results in a block diagonal structure to the linear operator L.

We assume that W; is associated with the trivial irreducible representation v = [
for all v € I and so W, = Fix(I').

This is relevant to the calculation of Lyapunov exponents since the variational equa-
tion involves the linear operator g4(A). It is well known and easily verified that if there
is a trajectory A(t) of (2.1) such that A(¢) € Fix(¥) for some subgroup ¥ of I', then

oga(A(t)) = ga(A(t))o for all o € X.

Thus, the linear operator g4 decomposes on the Y-isotypic components of the space X.
Thus, the important symmetry group in this case is not the symmetry group I' of the
equation but the subgroup ¥ of symmetries of the particular solution being considered.

We now consider the CGIL equation (1.1) on the one-dimensional domain [0,27)
with periodic boundary conditions. This equation has both continuous and discrete

symmetries which are given by

0A(z,t) = ePA(z,t), 6¢€][0,2r)
roA(z,t) = Az + a,t), a€]|0,27)
3A(z,1) = A(z,t+p3), BER
s1A(z,t) = A(—z,1).

These symmetries correspond respectively to a rotation of the complex amplitude, space
translation, time translation and a spatial reflection. We note that a special case of the
rotation occurs when # = 7 and this gives another symmetry of order two. Since this

will be important in our later work, we define
TA(z, 1) = s2A(x,t) = —A(z,t).

Relative equilibria are associated with continuous symmetries and in this case, the 6
symmetry gives rise to such solutions which are often referred to as rotating waves.

These were studied in some detail in [15] which included a linear stability analysis.

3 Lyapunov Exponents and Symmetry

The way that symmetry affects the determination of Lyapunov exponents was considered
in [6] and applied to systems of coupled oscillators. We briefly review the main results
of that work and will then apply the ideas to the CGL equation.



2 Symmetries of the CGL Equation

In this section we briefly outline some of the theory of dynamical systems with symmetry,
concentrating on its applicability to the CGL equation. Group theory is the natural
language with which to discuss symmetry; see [19] for many results concerning the
application of symmetry to dynamical systems and their bifurcations.

We consider a general evolution equation of the form

Ar=g(A), ¢:X



if this motion is chaotic, then we can determine normal Lyapunov exponents associated



1 Introduction

Pattern formation in nonlinear partial differential equations is a much studied topic.
One common problem is determining the spatial patterns which can occur when a spa-
tially uniform (steady) state loses stability. In 1983, Yamada and Fujisaka [33] were
interested in the stability of spatially uniform chaotic solutions of a nonlinear partial
differential equation to perturbations which are not spatially uniform. In order to study
this problem, they considered a finite difference discretisation of the PDE which gave a
finite-dimensional system of coupled oscillators. The uniform state for the PDE corre-
sponds to a synchronised state for the coupled oscillators. Stability of this uniform state
was described in terms of what we now call normal Lyapunov exponents. However, the
only numerical results presented in this work were for two coupled Lorenz systems.

This work went largely unnoticed until Pecora and Carroll [29] demonstrated that in
some circumstances it is possible to synchronise two identical chaotic systems by linking
them with a common signal. Since that time, there has been much interest in and study
of synchronisation in systems of coupled oscillators, one interesting application being
secure communication [26].

Mathematically speaking, synchronisation corresponds to motion in an invariant sub-
space which is stable with respect to perturbations normal to the subspace. If the largest
normal Lyapunov exponent, associated with perturbations normal to the subspace, is
negative, then the synchronised state has a positive measure basin of attraction, which
may however be riddled so that there is a dense set of positive measure in any neighbour-
hood of the invariant subspace which is in the basin of another attractor [1, 2, 3, 28].
If the largest normal Lyapunov exponent changes sign as a parameter is varied, then a
blowout bifurcation occurs which may be either supercritical or subcritical [2]. In order
to gain a deeper understanding of these phenomena, model equations of low dimension
are often studied [4].

The synchronised state of coupled identical oscillators is a natural setting for an
invariant subspace. Another natural way of generating invariant subspaces is by the use
of symmetry. Fixed point spaces are invariant under the dynamics of a system with
symmetry and blowout bifurcations can be considered from these invariant subspaces
also. Rings of coupled oscillators with symmetry were considered by Aston and Dellnitz
[6] and it was shown how the normal Lyapunov exponents can be classified according to
the symmetry of the problem. This also leads to more efficient methods of computing
Lyapunov exponents since the linearisation of the system which is used to compute them
can be decomposed on the isotypic components which are associated with the different
irreducible representations of the group action.

We now extend the ideas of Aston and Dellnitz [6] to partial differential equations

with symmetry. Again, the flow of a PDE is invariant on various fixed point spaces and,
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