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Abstract

We study the unexpected disappearance of stable homoclinic orbits in regions

of parameter space in a neural field model with one spatial dimension. The

usual approach of using numerical continuation techniques and local bifur-

cation theory is insufficient to explain the qualitative change in the model’s



1. Introduction

Pattern formation in spatially extended systems is an area of study that has

shown major progress within the last few decades. Systems from a wide range

of biological, geophysical, ecological, physical and material sciences are stud-

ied, making pattern formation an interdisciplinary science. Spatial patterns

can be stationary, travelling or disordered in both space and time, i.e. spatio-

temporally chaotic. Spatially localised solutions are of importance in many dif-

ferent areas, such as the study of localised buckling of long struts [1, 2], nonlin-

ear optics [3], vibrating granular media [4], convection problems [5] and neu-

roscience [6, 7]. In neural field models, stationary spatially localised regions of

high activity (“bumps”) have been studied in the context of working memory,

as single-bump steady state solutions are believed to be the analogue of short-

term memory [6, 8–10]. Although these systems are quite diverse, they often

display similar behaviour. Given this, it is of interest that the systems usually

have key features in common such as bistability, invariance under translation

and spatial reflection, and are represented by differential equations that are at

least fourth-order in space. The time-independent system can often be written

as a dynamical system in space, where spatially localised solutions correspond

to homoclinic orbits to the fixed point at the origin. Homoclinic snaking is also

a feature in many systems [2, 11–15], with some of the best studied examples

being fourth-order partial differential equations [1, 2, 15].

By exploiting the properties of higher order reversible Hamiltonian equa-

tions, advances have been made in the understanding of homoclinic solutions

in pattern forming systems. One such example is the Swift-Hohenberg equa-

tion in both one and two spatial dimensions [11–13, 16]. We refer the reader

to the work of Champneys [1] for a review of both the theory and application

of homoclinic orbits to equilibria in even-order reversible systems in four or

more dimensions. Reversible and Hamiltonian systems have some important

properties which we briefly discuss here. In a reversible, non-Hamiltonian sys-

tem, symmetric homoclinic orbits are codimension zero, therefore they persist

under a perturbation that preserves reversibility. However, asymmetric homo-

clinic orbits are codimension one and are destroyed by a generic perturbation

that breaks the conserved quantity but still preserves reversibility [1]. In a non-

reversible Hamiltonian system, both symmetric and asymmetric homoclinic
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what is causing the breaks. We show below that the steady states of (1)-(3) can

be described by a four dimensional reversible Hamiltonian system. Our goal

is to exploit the Hamiltonian structure and reversibility properties to explain

the qualitative changes in the behaviour of the model, using two different ap-

proaches.

Firstly, we develop a numerical technique to find all homoclinic orbits of the

system; these orbits correspond to the spatially localised steady states of (1)-(3).

Numerically, we find a separate solution curve which exists when the firing

rate function is sufficiently steep. This curve has not been reported previously

and cannot be found using standard continuation techniques. Using level set

analysis, we show that a codimension-one bifurcation, corresponding to the

termination of solution curves, occurs at certain parameter values.

Secondly, we replace the firing rate function in (2) by a step function so

that analytical techniques can be used to find travelling waves in the time-

dependent system. We find the speed of travelling fronts, showing that station-

ary fronts exist at the same parameter values for which break-points in the solu-

tion curves exist. Using the Hamiltonian structure of the system we show that

heteroclinic connections between fixed points also occur at the breakpoints.

The structure of the paper is as follows. In Sec. 2 we derive the ODE govern-

ing steady states of (1)-(3) and discuss its properties. In Sec. 3 we take a phase

space approach and derive a map, certain solutions of which correspond to

homoclinic orbits. The Hamiltonian structure is exploited in Sec. 4, while in

Sec. 5 we discuss the consequences of replacing the firing rate function by the

Heaviside step function. We conclude in Sec. 6.

2. The model and its properties

The model in (1)-(3) supports spatially-uniform steady states, spatially-lo-

calised solutions such as homoclinic orbits and both stationary and travelling

wave fronts (heteroclinic connections between a resting state and an excited

state), and spatially-periodic patterns. We have previously shown the existence

of both stable and transient spatially-periodic patterns beyond a Turing insta-

bility in (1)-(3) in one and two spatial dimensions [22]. Both the non-trivial spa-

tially uniform steady states, spatially-localised solutions and spatially-periodic

solutions depend upon the parameter b.
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For now, we consider time-independent solutions of (1) for which

lim
jxj!1

(u; u0; u00; u000) = (0; 0; 0; 0); (4)

i.e. stationary, spatially-localised solutions. These solutions satisfy the integral

equation

u(x) =
∫ 1
�1

w(x� y)f [u(y)] dy: (5)



2.2. Hamiltonian structure and reversibility

Firstly, writing (9) as a system of four first-order ODEs and linearising them

about the origin, we find that the Jacobian of this system has the four eigenval-

ues�b�i, i.e. the origin is a bifocus, with a two-dimensional unstable manifold

and a two-dimensional stable manifold. Now (9) can be written as a reversible

Hamiltonian system. For simplicity, write (9) as

u0000 + a1u
00 + a2u+ g(u) = 0 (10)

where a1 = 2(1� b2); a2 = (b2 + 1)2 and g(u) = �4b(b2 + 1)f(u). Defining the

variables v; pu and pv via

u0 = v (11)

v0 = pv (12)

p0u = a2u+ g(u) (13)

p0v = �pu � a1v (14)

and defining the Hamiltonian

H(u; v; pu; pv) = puv +
p2
v

2
+
a1v

2

2
� a2u

2

2
�G(u) (15)

where

G(u) � �8b(b2 + 1)
∫ u

0

exp [�r=(z � �)2]�(z � �) dz;

we see that the Hamiltonian is conserved (H 0 = 0) and the dynamics are given

by

u0 =
@H

@pu
(16)

v0 =
@H

@pv
(17)

p0u = �@H
@u

(18)

p0v = �@H
@v

(19)

Note that G0(u) = g(u). The system in (16)–(19) is invariant under the space-

reversing symmetry

R(x; u; v; pu; pv) 7! (�x; u;�v;�pu; pv);

that is, it is reversible.
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3. Using a map

Having established the Hamiltonian structure of (9), we take a phase space

approach and derive a two-dimensional map, certain solutions of which cor-

respond to homoclinic orbits to the origin of (9). By doing this we reduce the

problem of finding single-bump homoclinic orbits to finding the zeros of a real

scalar function.



with �b� < A, since we need 0 < v on �0. Note that only one parameter, A, is

needed to describe a point on Wu \ �0.

We define the mapping P : �0 ! �1 for all y0 2 �0 as resulting from

numerically integrating (9) with y0 as an initial condition until the solution hits

�1 for the first time, at the point we define to be y1. In practice we will only

consider points y0 2Wu \�0, where Wu \�0 is a one-dimensional manifold.

For such points, as long as �b� < A, the solution of (9) through y0 will always

transversally meet �1 for some x > 0, and thus P is defined for these y0.

From (20) our initial condition for (9) is
u(0)

u0(0)

u00(0)

u000(0)

 =


�

A+ b�

�� + 2Ab+ b2�

�A� 3b� + 3b2A+ b3�

 (21)

which can be written in Hamiltonian coordinates using (11)-(14) as
u(0)

v(0)

pu(0)

pv(0)

 =


u(0)

u0(0)

�a1u
0(0)� u000(0)

u00(0)

 (22)

Using (21)-(22) we can write

Wu \ �0 = f(u; v; pu; pv)ju = �; v > 0; H = 0; pv = 2bv � �(b2 + 1)g

which can be visualised as a straight line in the right half of the (v; pv) plane.

Because of the reversibility of the system, the stable manifold of the origin,W s,

is given by W s = R(Wu). Thus

W s \ �1 = f(u; v; pu; pv)ju = �; v < 0; H = 0; pv = �2bv � �(b2 + 1)g

which forms another straight line in the left half of the (v; pv) plane.

To find homoclinic orbits to the origin with u > � over only one interval (a 1-

bump solution), we choose a y0 2Wu\�0 and let y1 = P (y0). If y1 2W s\�1

then y0 lies on such a homoclinic orbit, as shown in Fig. 1. Let the coordinates

of y0 2 Wu \ �0 be (v0; p0
v) and y1 2 W s \ �1 be (v1; p1

v), and suppose that

these points lie on a homoclinic orbit to the origin. If1
v), and suppose that



for a general y0 2Wu\�0 we calculate the signed vertical distance, h, between

P (y0) and W s \ �1:

h = p1
v � [�2bv1 � �(b2 + 1)] = p1

v + 2bv1 + �(b2 + 1)

Recalling that a point on Wu \ �0 can be parameterised by A we can regard h

as being a scalar function of A; to find homoclinic orbits to the origin we just

need to find zeros of h(A). Note that any N -bump solution can be found by

modifying the mapping P to terminate on the N th intersection of �1, crossing

in the appropriate direction.

3.2. Numerical Results

For all of the analyses in this section we set � = 1:5. We initially set r =

0:095. By varying b, we use the mapping derived above to search different

regions of parameter space and find all existing homoclinic orbits. For b =

0:25, we find that the mapping is continuous, as seen in Fig. 2 where a plot

of W s \ �1, Wu \ �0 and the mapping of initial conditions on Wu \ �0 are

shown. The circles on Wu \ �0 indicate the two initial conditions which map

to W s \ �1 (also indicated by circles), therefore these two initial conditions lie

on two homoclinic orbits. The orbits are symmetric as the pv coordinate of each

initial condition on Wu \ �0 is unchanged under the mapping to W s \ �1.

To find the solution curves, we convert the solutions found with the map-

ping to full solutions over the finite domain x 2 [�15�; 15�], as with this size

domain the boundary conditions in (4) are satisfied. The software package

AUTO [27] is used for continuation and solving bifurcation problems in ordi-

nary differential equations with one or more free parameters and includes the

package HomCont for the bifurcation analysis of homoclinic orbits. Therefore

we write the ODE in (9) as a system of first order equations, take a full solu-

tion as a starting solution, and use AUTO to compute the solution curves by

varying the parameter b. We find the solution curves shown in the top plot of

Fig. 3 where the global maximum of u is plotted as a function of b. The sym-

bols �1;�3 and �5 indicate families of 1-, 3- and 5-bump solutions respectively.

The results agree with the solution curves found in [7] where there are two

single-bump symmetric homoclinic orbits at b = 0:25. We vary b but no new

solution curves are found using our two-dimensional mapping (for r = 0:095)

and the solution curves are continuous. Solid (dotted) lines show branches of
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stable (unstable) solutions. Solution stability is determined numerically using

an eigenvalue analysis of the spatially perturbed full system [21]. We see that

the system is multi-stable as N -bump solutions, in general, come in pairs of

one stable solution and one unstable solution.

We now decrease r to 0:090. By varying b and using our mapping, we find



each side of the break in the main solution curve as r decreases from 0:0899.

The main solution curve breaks around b = 1 and here, the coefficient of the

second deriviative in the ODE in (9) vanishes. We plot solutions at b = 0:932 for

r = 0:090 and r = 0:0899 in Fig. 7 to see if there are qualitative differences in the

solutions. In the left plot we show solutions from the main curve (solid line)

and the small curve (dotted line) from Fig. 5 for r = 0:090. At this particular

value of b, the solution on the small curve is near the terminating spiral and is

a “dimple” bump solution, that is, the solutions have a positive second spatial

derivative at the centre of the bump. The solution is also broader than the

single-bump solution on the main curve. In the right plot of Fig. 7 we do the

same for the main curve (solid line) and the left tail formed by the small curve

(dotted line) in Fig. 6 for r = 0:0899. Again, near the terminating spiral on the

tail, the solution is a “dimple” bump and is a broader solution than that on the

main curve.

We are interested in how the small branch of solutions from Fig. 5 changes

as r is varied. In Fig. 8 we plot the curve for five different values of r. The

topmost curve is the small solution curve at r = 0:090. Continuation methods

reveal a shrinking of this curve as r increases beyond 0:090. At r = 0:091875,

the two endpoints of the curve meet, creating an isola [28]. The isola exists

only briefly and disappears quickly as r increases further. Therefore the small

solution curve only exists for a small range of r. To see how the solutions

change on the curves in Fig. 8, we plot the solution at b = 1 from four of the

curves in Fig. 9. As the small curve shrinks, the solution becomes progressively

broader and eventually, on the isola that exists at r = 0:091875, becomes a

“dimple” bump. All solutions on the isola are “dimple” bump solutions.

We now know how this particular branch of solutions is created, that it

eventually meets the main curve, causing it to break as r decreases and creating

a gap in the main solution curve where no stable homoclinic orbits exist.

Although the mapping reduces the problem of finding homoclinic orbits

to finding the zeros of a real scalar function, the function obtained is not nec-

essarily continuous so it can be difficult to make conclusions about the global

existence of solutions and global bifurcations. The existence of a small separate

branch of solutions partially explains the gap in the curve, but we want to un-

derstand why the curves end and what causes the gap to widen as f becomes

steeper. In the next section we use level set analysis to find a global bifurcation
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at the terminating ends of the solution curves.

4. Heteroclinic connections

Homoclinic orbits lie on energy surfaces, therefore the topology of the level

sets fu : H(u) = e; e 2 Rg can change only where the level set contains a critical

point. These critical points are the fixed points of the system. Up until now, we

have only considered homoclinic orbits to the fixed point at the origin; we now

study other fixed points of the system to understand what causes the curve of

solutions to break and destroy homoclinic orbits to the origin.

4.1. Theory

Depending on parameter values, (9) can have up to three fixed points. One

is the origin, Z0, which exists when 0 < �. The other two are referred to as

Z1 for which (u; u0; u00; u000) = (u1; 0



a large break in the main solution curve and the terminating ends of the break

correspond to the values of b for which H(Z2) = 0.

For parameter values such that H(Z2) = 0, a codimension-one bifurcation

occurs in which the stable and unstable manifolds of Z0 and Z2 intersect, de-

stroying all homoclinic orbits to the origin. This bifurcation is similar to the

codimension-two heteroclinic bifurcation called a T -point or terminal point,

studied in two-dimensional parameter space in the Lorenz equations [29]. In

our system, as we move closer to the break points in the solution curves shown

in Fig. 10, the solutions spend longer near the fixed point Z2 and thus develop

a broad “plateau” in their centre. At each break point, Z2 intersects the homo-

clinic orbit, forming a heteroclinic orbit between Z2 and the origin.

We conjecture that the end points of the solution curves occur whereH(Z2) =

H(Z0) = 0 as this is the behaviour we have seen for r = 0:085 and r = 0:090.

Figure 11 shows the curve in (b; r) parameter space whereH(Z2) = H(Z0) = 0.

At r = 0:0899 (4 d.p.), the separate solution curve meets the main curve. In

Fig. 11 the horizontal line at r = 0:0899 intersects the plotted curve at the two

values of b where the endpoints of the small curve occur. Above the horizontal

line the small separate solution curve exists for a small range of r > 0:0899 and

the plotted curve gives the endpoints of this separate solution curve. Below

the horizontal line, the separate solution curve no longer exists and the plotted

curve gives the the terminating ends of the main solution curve.

5. Heaviside firing rate function

So far, many of our results have had to be calculated numerically, due to

the presence of the nonlinear function (2). More analytical progress can be

made if the firing rate function f is replaced by a piecewise linear function [6]

or a Heaviside step function [8, 24]. Here we consider the case when f(u) =

2�(u� �), which is the result of taking r ! 0 in (2).

In most neural field models, some form of lateral inhibition is required for

stable stationary bumps to exist [8, 10]. It has been shown previously that

spike-frequency adaptation changes travelling waves from fronts to bumps in

a one-dimensional single population model [30]. More recently, Kilpatrick and

Bressloff [31] found that stable stationary bumps can coexist with fronts in an

excitatory neuronal network with synaptic depression, however, bumps can-
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not exist in the presence of adaptation. In this section we show that our model,

with decaying oscillatory connectivity but no negative feedback, can support

travelling waves in the form of fronts as well as stable stationary bumps.

5.1. Using a Map

The derivation of a map can be carried out in a similar way to that in

Sec. 3.1, the only difference being that we can now analytically find u(x) when

� < u(x), rather than having to numerically integrate (9). The solutions found

are shown in Fig. 12, and there is a wide range of b for which no stable ho-

moclinic orbits can be found. The values of b for which the solution curves

terminate agree with the values of b corresponding to r = 0 in Fig. 11. Thus

it seems that the terminating ends of the solution curves for r = 0 must occur

when a nonzero fixed point of the system meets the zero energy surface. We

now investigate this further by finding heteroclinic orbits of the system.

5.2. Heteroclinic connections

As before, we find fixed points of (9). The origin is a fixed point for � > 0

and there exists one other, Ẑ, for which (u; u0; u00; u000) = (8b=(b2 + 1); 0; 0; 0),

when 0 < � < 8b=(b2 + 1). Using (15) we see that at Ẑ, H = 32b2 � 8b(b2 + 1)�,

thus Ẑ will lie on the level set H = 0 when

� =
4b

b2 + 1
: (23)

Setting � = 1:5 in (23) we find that this equation is satisfied when b = 0:4514 or

2:2153 (4 d.p.) which are exactly the endpoints of the curves in Fig. 12 and also

the values of b at which the curve in Fig. 11 touches the b axis. Furthermore,

eqn. (23) cannot be satisfied by any real b if � > 2, which implies that the curve

in Fig. 12 will not break if � > 2. It appears that the breaks in the solution curve

are related to the firing threshold, �.

5.3. Stationary fronts

The analysis so far has been concerned with time-independent solutions



5.3.1. Front Construction

Following [32], by using a Green’s function in time the solution of (1) can

be written in integral form

u(x; t) =
∫ 1
�1

∫ 1
0

�(s)w(y)f [u(x� y; t� s)] ds dy (24)

where �(t) = �(t)e�t, and this form can be used to construct travelling wave

solutions. We now set f(u) = 2�(u��) and explicitly construct travelling front

solutions that join the states u = 0 and u = 8b=(b2 + 1). For certain parameter

values these fronts are stationary, and these parameter values are found to be

those for which heteroclinic connections between the origin and Ẑ were found

in Sec. 5.2.

Define the travelling coordinate � = x � ct, where c is a speed, and let

U(�; t) = u(x� ct; t). Then (24) can be written

U(�; t) =
∫ 1
�1

∫ 1
0

�(s)w(y)f [U(� � y + cs; t� s)] ds dy: (25)

A travelling wave solution of (24) is a time-independent solution of (25), say

q(�), which satisfies

q(�) =
∫ 1
�1

∫ 1
0

�(s)w(y)f [q(� � y + cs)] ds dy: (26)

If we define

�(�) �
∫ 1
�1

w(y)f [q(� � y)] dy (27)

then (26) can be written

q(�) =
∫ 1

0

�(s)�(� + cs) ds: (28)

Suppose that � < q(�) for � < 0, q(0) = � and q(�) < � for 0 < �, i.e. q is a front.

Then

�(�) = 2
∫ 1
�

w(y) dy: (29)

Since q(0) = �, we see from (28) that

� =
∫ 1

0

�(s)�(cs) ds (30)

which can be solved for the speed c in terms of other parameters [21]. Station-

ary fronts satisfy

� =
∫ 1

0

�(s)�(0) ds = 2
∫ 1

0

w(y) dy =
4b

b2 + 1
(31)
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since
∫1

0
�(s) ds = 1= 1



We identify E(�) as the Evans function, and its roots are the isolated eigenval-

ues associated with the linearisation of (25) about the travelling wave solution

q. It is straightforward to show that E(0) = 0, as expected, reflecting the trans-

lational invariance of the problem. Defining

H(�) =
∫ 1

0

�(y)w(cy)e��y dy (38)

and using the fact that E(0) = 0, one can write

E(�) = 1� H(�)
H(0)

(39)

thus avoiding the explicit construction of q0(0). When c = 0, E(�) = �=(1 + �),

independent of the coupling function w. In this case the only root of E(�) is

� = 0.

It can be shown that the essential spectrum associated with the stability of

q lies strictly in the left half of the complex plane [32], and combining this with

the result immediately above, we see that stationary front solutions of (24) are

linearly stable.

5.4. Results

We now put together the results from Secs. 5.2 and 5.3 by plotting the solu-

tion curves, the speed of travelling fronts and the Hamiltonian at the nonzero

fixed point Ẑ as functions of b in Fig. 14. The breaks in the solution curves oc-

cur for the same two values of b for which stationary fronts (heteroclinic con-

nections) exist and for the parameter values at which the Hamiltonian of the

nonzero fixed point is equal to zero. So — for this value of � — at two values

of b a global bifurcation creates a heteroclinic connection at the breakpoints of

the solution curves, destroying the homoclinic orbits in the region of the break.

6. Discussion

We have examined the unexpected disappearance of stable homoclinic or-

bits in certain regions of parameter space in a neural field model with one spa-

tial dimension, using the decaying oscillatory coupling function and smooth

firing rate function studied previously in [7, 21]. For a particular firing thresh-

old, we have shown that the solution curve of stable homoclinic orbits to the
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In general, we want a qualitative model to be robust to small changes in

parameters, however, the phenomena we have seen occurs in a certain region

of parameter space that has not been previously studied and the rich behaviour

displayed is of interest in its own right. Further areas of study arise out of the

work presented here. We do not yet know what causes the isola to spring

into life as the firing rate function steepens nor do we fully understand the

apparent spirals occurring at the terminating ends of the solution curves. As

stationary fronts occur at the breakpoints in the solution curves, we also note

an exploration of travelling fronts in the region of discontinuity of the solution

curves, as shown in Fig. 4, as a topic for further study.
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Figure 1: Schematic of a homoclinic orbit. The orbit intersects the section �0 transversally at the

point y0 and the section �1 transversally at the point y1. The stable and unstable manifolds of the

fixed point are W s and Wu respectively.
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Figure 2: Mapping of initial conditions on Wu \ �0 for parameter values (b; r; �) =

(0:25; 0:095; 1:5). The circles on Wu \ �0 indicate the two initial conditions that map to the two

circles on W s \ �1. The two initial conditions lie on two symmetric homoclinic orbits.
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Figure 3: Solution curves of homoclinic orbits for (1)–(3) with b the continuation parameter. Top:

For r = 0:095, the main solution curve is continuous. Middle: For r = 0:090, a small separate

solution curve exists and lies near, but does not quite touch, the solution curve of stable homoclinic

orbits. Bottom: For r = 0:085, the small solution curve has met the main curve, causing a large

“break” where no stable homoclinic orbits exist. Solid line: stable, dashed: unstable. See the text

for an explanation of labels.
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Figure 4: Top: initial condition (dashed) and steady states of a simulation of (1)–(3) for b = 0:8

(dash-dotted) and b = 1:2 (solid). Bottom: snapshots at the specified times when b = 1. Other

parameters: r = 0:085; � = 1:5.
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Figure 5: Closer view of the small separate solution curve in the middle plot of Fig. 3 for r = 0:090.

There is a kink in the main solution curve where the distance to the small curve is smallest.

Figure 6: As r decreases from 0:090 to 0:0899, the small separate solution curve shown in Fig. 5

meets the main solution curve at b = 1:0167. A closer view of the intersection between the two

solution curves shows that two tails ending in spirals have formed.
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Figure 7: Left: Solutions at b = 0:932 for r = 0:090 on the main solution curve of single-bump

solutions (solid line) and the small solution curve (dotted line) in Fig. 5. Right: Solutions at b =

0:932 for r = 0:0899 on the upper curve of single-bump solutions (solid line) and the small tail

caused by the small curve meeting the main curve (dotted line) in Fig. 6. In both cases, the solutions

on the small curve near the terminating spiral are “dimple” bumps that become broader the closer

they are to the spiral.
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Figure 8: The topmost curve is the small curve found for r = 0:090 in Fig. 5. As r increases

to 0:0905; 0:0910; 0:0918 and 0:091875, the curve shrinks and eventually forms an isola at r =

0:091875.
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Figure 9: Solutions at b = 1 from the curves for r = 0:0905, 0:0910, 0:0918 and 0:091875 in Fig. 6.

As the small curve shrinks (r increases), the solutions become progressively broader and on the

isola at r = 0:091875, the solutions have become “dimple” bumps.
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Figure 10: Top row: solution curves of homoclinic orbits to the origin of (1)–(3). Bottom row: the

value of the Hamiltonian (H) at the two non-trivial fixed points Z1 (dashed line) and Z2 (solid

line). Columns from left to right: r = 0:095, r = 0:090, r = 0:085. Dash-dot vertical lines indicate

values of b for which H(Z2) = 0.
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Figure 11: Points in (b; r) parameter space where H(Z2) = H(Z0) = 0 for � = 1:5 in (1)–(3). At

r = 0:0899 (horizontal line), the separate solution curve meets the main solution curve. Below

this line, the curve gives the endpoints of the solution curve. Above this line, the curve gives the

terminating ends of the separate solution curve.
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Figure 12: Single-bump solution curves of (1) and (3) with f(u) = 2�(u� 1:5).
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Figure 13: Speed of travelling fronts, c, in (28) as a function of b for � = 1:5. Stationary fronts occur

at b = 0:451 and b = 2:215. (Note that the curve does not exist for b < 0:195 because for a front of

the type constructed to occur we must have � < 8b=(b2 + 1).)
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